
ALKYL AND STANNYL RADICAL GENERATION BY C-Sn AND Sn-Sn BOND DISSOCIATION IN PHOTOLYTICALLY EXCITED PERALKYLATED TRISTANNANES AS STUDIED BY ESR AND ¹¹⁹Sn-CIDNP

Christian Grugel, Manfred Lehnig, Wilhelm P. Neumann^{*}, and Josef Sauer Lehrstuhl fur Organische Chemie I der Universität, D 4600 Dortmund 50

<u>Summary</u> Tristannanes used as photochemical precursors for the synthesis of organic compounds react via triplet states followed by homolytic C-Sn and Sn-Sn bond scission.

Tristannanes $R_3Sn-SnR_2'-SnR_3$ (R,R' = alkyl) have been used for photochemical stannylenoid reactions, e.g. the formation of 2-stanna-1,3-dioxolanes from aldehydes². Triplet states of the tristannanes and free radicals R_3Sn have been proposed as intermediates. Since the photochemical behaviour of tristannanes has not yet been described, it will be investigated here using ESR spectroscopy and ¹¹⁹Sn-CIDNP³⁻⁵ for two tristannanes (R = Me, R' = Me, Et). During UV irradiation ethyl radicals are observed with R' = Et indicating a C-Sn bond scission besides the Sn-Sn bond cleavage giving Me₃Sn radicals (ESR, n-pentane, 193 K)

Before and after 5 min. irradiation only the normal ¹¹⁹Sn NMR signals of the starting materials are recorded at room temperature as indicated in Fig.1 by the bars. During the reaction, however, ¹¹⁹Sn-CIDNP appears (see Table I and Fig.1.). All evidence points to the following reaction scheme (tin atoms showing CIDNP are underlined).

Me35n-50R2-50Me3	11	(Me ₃ Sn) ₂ R'Sn'+R' ^{-T} Me ₃ Sn'+SnR ₂ -SnMe ₃ ^{-T}		(Me ₃ Sn) ₂ R'Sn+ R+	
↓hv	X,			Me ₃ Sn++*SnR2-SnM	[1]
Ime350-2016-200083	J'>	Me3SUL, SURS-SUME3		Me ₃ Sn'+'SnR ₂ -SnM	⁸ 3
2 Me ₃ Sn [.]	—	Me ₃ Srr •SnMe ₃ ^F	>	Me <u>3SD-SD</u> Me3	[2]
MegSn-SnR2* + R*		MegSn-SnR2 R		Me <u>3SD-SD</u> R3	[3]
MegSn• + R'•	>	Me ₃ Sn [.] R ^{, F}		Me ₃ SDR'	[4]
2 Me ₃ Sn-SnR ₂ *		Me3Sn-SnR2 *SnR2-Sn	Me ₃ [#] →	(Me350-50R2)2	[5]

Table I. ¹¹⁹Sn-CIDNP during irradiation of tristannanes Me₃Sn-SnR₂'-SnMe₃ (R' = Me, Et) in benzene-d₆ (0.2 mol/l) without and with EtBr (1 mol/l) Chemical shifts with Me₄Sn as standard.

Assignment	Chemical shift		Polarisation	
	(ppm)		withoute with	
	R' = Me	R' = Et	EtBr	EtBr
Me <u>3Sn</u> -SnR2- <u>Sn</u> Me3	- 983	- 991	A	A
Me ₃ Sn- <u>Sn</u> R2-SnMe ₃	- 259 9	- 199 1	Α	A
Me ₃ <u>Sn</u> R'	00	+ 47	A	
Me ₃ <u>Sn</u> - <u>Sn</u> Me ₃	- 109.0	- 109 3	A	-
Me ₃ <u>Sn</u> -SnR ₃	- 1090	- 108.3	A	-
Me ₃ Sn- <u>Sn</u> R' ₃	- 1090	- 626	A	
(Me ₃ <u>Sn</u> -SnR ₂) ₂	- 968	-	A	-
(Me ₃ Sn- <u>Sn</u> R' ₂) ₂	- 248 6	- 188 8	A	-
Me ₃ <u>Sn</u> -SnR ₂ Br (?)	- 656	- 69 0	-	E
Me ₃ SnEt	+ 53	-	-	A
Me ₃ <u>Sn</u> -SnR ₂ Et	- 107 8	- 108 3		A
Me ₃ Sn- <u>Sn</u> R ₂ Et	- 921	- 62 6	-	A

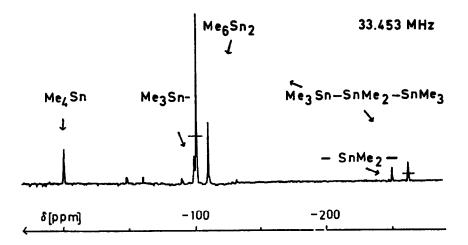
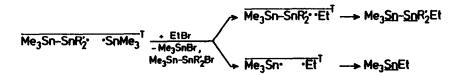



Fig. 1. ¹¹⁹Sn-CIDNP during irradiation of Me₈Sn₃ in benzene-d₆. Scan time 5 m. The signals at δ = -46.0, -57.4, and - 88.0 are ^{117,119}Sn satellites.

These CIDNP effects are built up in radical pairs formed by splitting of the tristannanes from triplet states (T) or by encounters of independently generated free radicals (F). It has to be assumed that a (¹¹⁹Sn, α) and a (¹¹⁹Sn, β) both are negative³. To establish the T mode decomposition of the tristannanes, in additional experiments EtBr was added to the solutions which is known as an efficient scavenger for stannyl radicals (see Table I and Fig.2). The CIDNP effects built up by diffusing radicals, reactions 2 - 5, are suppressed, while the tristannanes' polarisations still appear thus proving their triplet state origin, reaction 1. Also, the formation of Me₆Sn₂ is completely suppressed (GC) excluding the alternative formation of free stannylenes which had to be discussed previously

 $Me_3Sn-SnR_2-SnMe_3 \xrightarrow{hv} Me_6Sn_2 + :SnR_2$

The A effects additionally observed are caused by cage substitution reactions

The emission signals at δ = - 65.6 and - 69.0 presumably are due to bromotin compounds.

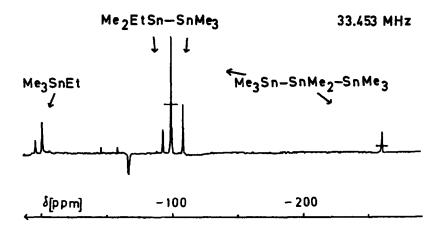


Fig. 2 ¹¹⁹Sn-CIDNP during irradiation of Me₈Sn₃ in benzene-d₆ with EtBr. Scan time· 5 m. For reference, Me₁₁Sn was added.

The enhancement factor of the ¹¹⁹Sn signal at $\delta = -98.3$ in Me₈Sn₃ is found to be 5 900 (T₁ = 1.5 s, no nuclear Overhauser effect). Kaptein's treatment combined with den Hollander's "perturbed S-T₀ evolution"⁷ gives a value of 7 100 for the radical pair $\overline{Me_3}^{119}\overline{Sn^{\cdot\cdot R}}^T$ (R without magnetic nuclei,a(¹¹⁹Sn = - 161.1 mT)⁸) showing that triplet state Me₈Sn₃ is at least the predominant ¹¹⁹Sn-CIDNP precursor. The dissociation from excited singlet states, however, cannot be excluded as a minor pathway by CIDNP experiments.

During irradiation of the tristannanes with aldehydes, the H-CIDNP effects usually observed during photoreactions of aldehydes are suppressed. In contrast to this, the ¹¹⁹Sn-CIDNP effects can still be observed in the tristannanes. It is concluded that the reaction of aldehydes with tristannanes² occurs via excited states of the tristannanes.

Acknowledgement. We are grateful to the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, for support, to the Schering AG for organotin starting materials, and to the Fonds der Chemischen Industrie for valuable substances.

REFERENCES

- Presented at the 4th EUCHEM Conference "Organic Free Radicals", Cirencester (England), Sep. 10.-14.1979, and based in part on the Dissertation of Ch. Grugel, Univ. Dortmund, 1977.
- 2. Ch. Grugel, W.P. Neumann, J. Sauer, and P. Seifert, Tetrahedron Lett. 1978, 2847.
- 3. M. Lehnig, Chem. Phys. 8, 419 (1975).
- 4. M. Lehnig, W.P. Neumann, and P. Seifert, J. Organomet. Chem. 162, 145 (1978).
- 5. M. Lehnig, Chem. Phys. Lett., in press.
- 6. R. Kaptein, J. Amer. Chem. Soc. <u>94</u>, 6251 (1972).
- 7. J.A. den Hollander, Chem. Phys. 15, 397 (1976).
- 8. J.E. Bennett and J.A. Howard, Chem. Phys. Lett. 15, 322 (1972).

(Received in Germany 9 November 1979)